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Abstract 61
The structure of receptive fields in the visual cortex is believed to be shaped by

unsupervised learning . A simple variant of unsupervised learning is the extraction of
principal components. In thiE paper, we derived analytically the form of the principal
components of natural images. This derivation relies on results about the covariance
matrix of natural images (Field, 1987). Our resluts predict both the shapes and the
phases of the receptive fields. We also compared our resluts to numerical simulation
results (Hancock et al., 1992). Finally the biological relevance of our results is discussed.

1 Introduction

It is generally believed that the shape of the receptive fields in the visual cortex is determined
by some form of unsupervised learning. Hebb's postulate (Hebb, 1949) is the cornerstone
of most unsupervised learning models in neural networks. The naive Hebbian rule, how-
ever, is unstable. This problem is often overcome by adding constraints to this rule. One
such constraint is adding a decay term to this rule. It has been proven that a neuron with
Hebbian learning rule plus a proper decay term can perform a principal component extrac-
"tion (Oja, 1982). Furthermore, a neural network with proper lateral inhibition can perform
the extraction of several principal components simultaneously (Sanger, 1989). The compu-
tational importance of principal components is that they are the optimal linear projections
for minimizing the mean squared reconstruction error (Fukunaga, 1990).



Since the principal components of a set of inputs depend only on their covariance ma-
trix, it is reasonable that given this matrix, they can be calcuiated analytically. A knovnli
example is Linsker's multilayered network (Linsker, 1986; Linsker, 1988), which is trained
with random noise. The covariance matrix results from the existence of the Arbor functions
between the random input layer and the first layer. This induced correlation was used by
several investigators to give an analytic explanation of Linsker's result (Kammen and Yuille,
1988; Yuille et al., 1989; Tang, 1989; MacKay and Miller, 1990a; MacKay and Millcr, 1990b)
1

We believe that modeling the environment with natural scenes is more reasonable thap
modeling it with random noise or bars or edges, ztc., because the envirc.:inent to which the
visual cortex is exposed, through the visual pathway, is composed of natural scenes. When
the input environment is not random, the properties of the covariance matrix depend on
the nature of the environment, and on the preprocessing performed by the visual pathway.
However, in this paper, we have simplified the problem by neglecting the effects of this
preprocessing, as a first step towards a more complete mathematical understanding of the
receptive field structure of neurons in the visual cortex. Another aspect of this simplification
is that we can use our results to explain the simulation results (Hancock et aL., 1992), in
which the authors used a network of tnie type proposed by Sanger (Sanger, 1989) to extract
principal components from natural scenes. In their simulations, no preprocessing was applied
to the images, apart from multiplying the inputs by a smooth Gaussian function, in order
to eliminate edge effects.

The nature of the covariance matrix ot natural images was investigated by Filcd (Field,
1987). He found that the spectrum of covariance matrix is proportional to the inverse
of the square of the frequency. In section 2, we will derive analytically the form of the
principal components of natural images under this assumption.. Rather than taking a smooth
Gaussian window as Hancock et. al. did, we assume a circular hard boundary to the receptive
fields. We find that the solutions are the Fourier-Bessel functions (Jackson, 1975, etc.). We
will show in section 3, that under the assumption that the covariance matrix spectrum has
a small non-rotationally symmetric correction, the solutions have a definite phase.

When simulation results (Hancock et al., 1992) are compared to our results, we find a
good agreement for the higher eigenvalue solutions, with some deviations for lower eigenvalue
solutions. In the discussion we explain how these deviations may come about.

It is clear that the receptive fields obtained here are not identical to the receptive field
structures obtained experimentally in the visual cortex. Does this imply that neurons in the
first layers of the visual cortex are not principal component analyzers? We will address this
issue in the discussion.

'Their solutions are to an equation with some additional terms to the principal component equation, but
it is similar to a principal component equation.

2



2 The Rotationally Symmetric Solution

The principal components are the eigen-functions of the covariance matrix. Therefore the
equation we try to solve is the eigenvalue problem, i.e., the eigen-equation, which has the
form

Cwj = W,(1)

where w, are eigen-vectors, A is the eigenvalue, and C,, is the covariance matrix which is
defined as CQ = E[(I, - E[I,])(I, - E[IJ)] for input pattern {I,}. Since we are dealing with
two dimensional space, the index i really denotes a point in the two dimensional spacc, so it is
more convenient to rewrite the covariance matrix in the form C(r,, r'). Due to translational
invariance, C(r,,r') = C(r, - r'). In the continuous limit, the summation will become an
integral o-er r', t;-- the eigen-equation becorneb

J C(r - r')w(r')d2 r' = Aw(r). (2)

in which w(r) is the continuous limit of the eigen-vectors w,.
The Fourier transform (spectrum) of the covariance matrix has the form, C(k) = c/k'

where c is a constant (Field, 1987). Hereafter we will set c = 1 for convenience. Thus C(r)
satisfies V 2C(r) = -8(r) which can be readily proven by taking Fourier transformation on
both side of this equation. Therefore by operating both sides of the eigen-equation 2 with
V, we get

V'w(r) = w(r). (3)

In order to find a closed form solution to this equation, we assume that w(r) is non-zero
only within a circle of radius a. The justification for this is that the receptive field of a
neuron is always of finite size.2 The equation can be expressed in the polar coordinate, and
the solutions are (Jackson, 1975, etc.)

t) ( r { cOs(mO) for r<a (
) 0 for r > a

in which m = 0, 1, 2,..., J,(x) is the standard Bessel functions, A,, is the ith root of
equation J,(a/1VA) = 0 , r and 0 are the polar coordinate of r. Because the complete
solutions of the original eigenvalue problem must be a complete and orthonormal set of
functions, the complete set of solutions to the eigenvalue problem is 3

2 A Gaussian mask used in the numerical simulation (Hancock et al., 1992) is a relaxed version of the
boundary condition we have here. Solving the exact equation with a Gaussian mask becomes mathematically
more complicated. We should expect that for a Gaussian mask the solutions near the center should be almost
identical to the hard boundary solutions, but they would approach zero gradually near the boundary.

3 0f course the trivial solution that wri(r) equals zero must be deleted from this set.
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Figure 1: The shapes of the first ten principal components. (W ,(r) with a 1 and ,, 0)

J,((-)-- J )cos(m9 + 5,,) for r < a
(r 0 for r > a

(5)

w'jr) JJ( )si)n(m0 + 0,,) for r < a
w 0 for r > a

where 0r,,m is a set of undetermined phases. These two eigen-functions have the same eigen-
value A,,, i.e., they are degenerate.

If we order the solutions by the magnitudes of the correspondent eigenvalues A,,, the

first ten solutions, w,,(r) with Ot = 0 and a = 1, are drawn in figure 1.

3 Retrieving the Phase

The solutions above wki(r) and w2 (r) not only have undetermined phases, but also are
degenerate. This contradicts the results of the simulations (Hancock et al., 1992) in which
the phases seem to always take the value zero, and the wn, solution has a different eigenvalue

from the wM, solution. These results can be retrieved if we assume that the covariance matrix
has a non-rotationally symmetric perturbation term. This assumption is not arbitrary since
an inspection of Fields results(Field, 1987, figure 7) reveals that this is indeed the case.

Hereafter we assume this perturbation term has, in k space, the form

C'(k) = U(k)T(Ok). (6)

In order to calculate this perturbation, the representation of this perturbation in the two

degenerate eigen-functions wm(r) and w.,(r) has to be calculated. It is easier to perfo;m
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this in k space in which the eigen-functions w1,,(r) arid wu,(r) are replaced by their Fouri(r
transforms,

wmi(k) f,,(k)cos(m6k +¢m 1)
(7)

w•,(k) fm,(k.)sit(rrik + 0,,)

in which fi(k) = 7rj rJ( )J.,(kr),dr- (8)

where j= -1. If we denote

T(9k) = tIcoS(I(Ok - al)) (9)

which is the Fourier expansion of T(Ok). The representation of the perturbation mati ix %.-ith
respect to the two degenerate eigen-functions has the form

( C Ii ,T~ il Y,~ i )( , 1,1- =1 2 w 7 ,(k ) *C (k )w ,' ,(k )d k )( ,= i 2, 1,2!. : , )

=g' ( cos(b) -sin(6) (10)
sir(b) -cos( 6)/

in which 6 = 20,j+2mQ2r and g,.•, z 2 ,,! "f U(k)f,m,(k)12kdk. Since the two eigen-functions
are degenerate, any linear combination of these two eigen-functions is an eigen-function of C.
Therefore, all we have to do is to find a linear combination of them which diagonalizes the
perturbation matrix, i.e., to find the eigenvalues and eigen-vectors of the matrix in equation
10, which are

cos(6/2)

,cos(6,12) )
with eigenvalues gj, and -gm,, respectively. Furthermore, if U(k) = e/k 2 then the complete
expression for the correction to the eigenvalue takes the form g,, = E Amt2,,,/, 2 .

Thus the eigen-functions and eigenvalues after the perturbation can be readily written
out as

wmi(k) - J• ( r )cos(m( O _ a2,,))

(12)

w k) = J,.,( r )sin(m(O -o2m))

51A



with eigenvalues A,+ - A., + g,, , and "-i = A_, - 9 m, , respectively. So the degeneracy is
broken. This is in agreement with Hancock's simulations. These solutions have an important
feature, i.e., their phases are determined by the properties of the real world covaria-ice
matrix. If the covariance matrix has a definite symmetry with an inclination angle 0, then
the solutions would also have the same symmetry angle. Because in this case 2,, = a for
al rn. The spectrums of the covariance matrix, shown in figure I of Field's paper, indeed
indicates a symmetry axis along a = 0. Thus equation 12 predicts the zero phase result
found in Hancock's simulation. When Hancock used images which were tilted by 45 degrees

before being scanned, the preferred axis of the receptive fields was found to be 45 degrees.
Again this is predicted by equation 12, because the symmetry axis of the covariance matrix
spectrum also gets rotated by 45 degrees due to the rotated images, i.e., a = 45', and thus

the solutions also get rotated by 45 degrees.

4 Discussion

We have calculated the forms of the principal components of natural images based on the
result about the covariance matrix (Field, 1987), and have shown that a non-rotaticnally
symmetric perturbation can break the degeneracy and give a definite phase which only
depends on the properties of the real world covariance matrix. These results for a large part
agree with the numerical simulation(Hancock et al., 1992).

A discrepancy can be noticed between our results and Hancock's simulation results for
eigen-functions corresponding to smaller eigenvalues. This comes from the mixing of solu-
tions, due to a perturbation added to the covariance matrix(Merzbacher, 1970). This mixing
would be more noticeable for lower eigenvalue solutions since for smaller A,, and ),,, i.e.,

for large m and m', Ami AM'i, the solutions are nearly degenerate. Thus any small per-
turbation will yield highly mixed linear combinations of different eigen-functions, the same
linear combination phenomena we have discussed in section 3. The perturbation can come
from the difference between the Gaussian mask used in the simulation, and the hard bound-
ary we chose in the analytic analysis. It can also come from all sorts of correction to the
spectrum of the covariance matrix including the non-rotationally symmetric correction. An-
other correction can be a high frequency cutoff due to the finite sampling frequency of the
images.

The neurobiological relevance of the type of technique used in this paper is that we
can deduce for different learning rules what kinds of receptive fields they should produce.
Given these receptive fields, we can compare them to the real biological receptive fields.
This comparison can be used to assess whether the biological hardware really implements or
approximates a theoretically proposed learning rule.

The most obvious conclusion which stands out when we observe the results in figure 1, is
that these receptive fields have little resemblance to receptive fields reported in the biological
literature (Hubel and Wiesel, 1959, etc.). Does this imply that biological neurons are not
principal component analizers? When addressing this question we have to keep in mind that
the natural images projected on the retina, undergo preprocessing in the retina and LGN,

6



before they reach the visual cortex. Similar preprocessing should therefore be applied to
natural images in simulations and analytic studies, before a sensible answer can be given".
What can also be observed is that the receptive fields of the neurons in visual cortex seem to
form a non-orthogonal set such as Gabor function family (Daugman, 1985, etc.) as oppsed
to the orthogonal and complete function set we got here. This may result from neurons
being noisy entities, a property of neurons not being taken into account when formulating the
minimal mean square reconstruction error criterion, which results in the principal component
eigen-equation. All these issues are currently under study.
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